

Mahatama Phule Arts, Commers, Science Mahabidyalaya, Warud

Department of Mathematics

Quotient Group

Dr. R. S. Wadbude Associate Professor

Contents

≻Co-sets

Normal Sub-Group

Quotient Group

Lagrange's Theorem

Normal Sub-Group

```
A sub-group N of G is called normal Sub-
group of G if for every \mathbf{g} \in \mathbf{G} and for every \mathbf{n} \in \mathbf{N},
we have gng^{-1} \in \mathbf{N}.
```

Condition :

- 1. $gng^{-1} \in \mathbf{N}$ $\forall g \in \mathbf{G}, n \in \mathbf{N}$
- $2. gNg^{-1} \subset N \forall g \in G$
- 3. $gNg^{-1} = N$ $\forall g \in G$
- $4. gN = Ng \forall g \in G$

5. NaNb = Nab $\forall a, b \in G$

Quotient Group

Let N be a normal subgroup of group 'g' and the set
 G/N = {Na : a ∈ G}
 is collection of distinct right co-sets of N in G under

multiplication the G/N is Quotient group or factor group.

Example : Let Z be an additive group of integers and let N be subgroup of Z defined by $N = \{ nx \mid x \in Z \}$, where n is a fixed integer. Construct the quotient group Z/N. Also prepare a composition table for Z/N, when n=5.

Solution :-

An additive group Z of integer is abelian. Then its subgroup N is a normal subgroup. We have $Z = \{0, \pm 1, \pm 2, ...\}$, the elements of a quotient group Z/N are the cosets which are as under.

$$N = \{0, \pm n, \pm 2n, ...\}$$

Now

N+0 =
$$\{0, 0\pm n, 0\pm 2n, ...\} = N$$

N+1 = $\{1, 1\pm n, 1\pm 2n, ...\}$
N+2 = $\{2, 2\pm n, 2\pm 2n, ...\}$

$$N+(n-1) = \{n-1, 2n-1, 3n-1, -n-1, \dots\}$$

similarly one can show that

N+(n+1) = N+1N+(n+2) = N+2i.e. $N+(n+i) = N+i \qquad \forall i \in \mathbb{Z}$

Hence $Z/N = \{ N, N+1, N+2, ..., N+(n-1) \}$

For n=5: $N = \{0 \pm 5, \pm 10, ...\}$

The distinct cosets will be N,N+1,N+2,N+3,N+4. The composition table is

	Ν	N+1	N+2	N+3	N+4
Ν	Ν	N+1	N+2	N+3	N+4
N+1	N+1	N+2	N+3	N+4	Ν
N+2	N+2	N+3	N+4	Ν	N+1
N+3	N+3	N+4	Ν	N+1	N+2
N+4	N+4	Ν	N+1	N+2	N+3

Lagrange's Theorem

If G is a finite group and H is a subgroup of G, then o(H) is a divisor of o(G).

i.e. 0(G)/0(H)

Example: If
$$G = \{a, a^2, a^3, a^4, a^5, a^6 = e\}$$
 is a group of $H = \{a^3, d^3, d^4, a^5, a^6 = e\}$ is a group of

 $a^6 = e$ is its normal subgroup, then write G/H. Solution : Here the distinct cosets of H in G are

$$eH = \{e.a^{3}, e.e\} = \{a^{3}, e\} = H$$

$$aH = \{a.a^{3}, a.e\} = \{a^{4}, a\}$$

$$a^{2} H = \{a^{2}.a^{3}, a^{2}.e\} = \{a^{5}, a^{2}\}$$

$$a^{3} H = \{a^{3}.a^{3}, a^{3}.e\} = \{a^{6}, a^{3}\} = \{e, a^{3}\} = H$$

$$a^{4} H = \{a^{4}.a^{3}, a^{4}.e\} = \{a, a^{4}\} = aH$$

$$a^{5} H = \{a^{5}.a^{3}, a^{5}.e\} = \{a^{2}, a^{5}\} = a^{2}H.$$

In this way we obtain only three distinct cosets H,aH, a^2H of H in G. Hence G/N = {H,aH, a^2H }. **Example** : If $G = \langle a \rangle$ is a cyclic group of order 8, then

the quotient group corresponding to the subgroup generated by a² and a⁴ respectively.

Solution : Let,
$$G = \{a, a^2, a^3, a^4, a^5, a^6, a^7, a^8 = e\}$$

and $H_1 = \{a^2, a^4, a^6, a^8 = e\}$
 $H_2 = \{a^4, a^6, a^8 = e\}$

Since , G is abelian, therefore the subgroups H_1 and H_2 are normal in G.

o(G/H₁)= 8/4=2, o(G/H₂) = 8/2= 4 G/H₁= { H₁, H₁a}, where H₁a = { a^{3}, a^{5}, a^{7}, a } {H₁a³= H₁a, H₁a²= H₁a⁴= H₁a⁶=H₁a⁸= H₁} etc. G/H2 = {H₂,H₂a, H₂a², H₂a³}.

THANK YOU