\&lahatama 㨡hule $\mathfrak{A r t s}$,
Commers, Sciente flahaniopalaya, warud

Department of Mathematics

Quotient Group

Dr. R. S. Wadbude
Associate Professor

Contents

$>$ Co-sets
$>$ Normal Sub-Group
>Quotient Group
>Lagrange's Theorem

Coset

1.Under Addition
a) Left Coset: $\mathrm{a}+\mathrm{H}=\{\mathrm{a}+\mathrm{h}: \mathrm{h} \in \mathrm{H}\}$
b) Right Coset : $\mathrm{H}+\mathrm{a}=\{\mathrm{h}+\mathrm{a}: \mathrm{h} \in \mathrm{H}\}$
2. Under Multiplication
a) Left Coset : $\mathrm{aH}=\{\mathrm{ah}: \mathrm{h} \in \mathrm{H}\}$
b) Right Coset: Ha= $\mathbf{h a}: \mathrm{h} \in \mathrm{H}\}$

Normal Sub-Group

A sub-group N of G is called normal Sub-

group of G if for every $\mathbf{g} \in \mathbf{G}$ and for every $\mathbf{n} \in \mathbf{N}$, we have gng $^{-1} \in \mathbf{N}$.

Condition :

1.	gng $^{-1} \in \mathbf{N}$	$\forall g \in \mathbf{G}, \mathbf{n} \in \mathbf{N}$
2.	$\mathbf{g N g}^{-1} \subset \mathbf{N}$	$\forall g \in \mathbf{G}$
3.	$\mathbf{g N g}^{-1}=\mathbf{N}$	$\forall g \in \mathbf{G}$
4.	$\mathbf{g N}=\mathbf{N g}$	$\forall g \in \mathbf{G}$
5.	$\mathbf{N a N b}=\mathbf{N a b}$	$\forall a, b \in \mathbf{G}$

Quotient Group

- Let N be a normal subgroup of group ' g ' and the set

$$
\mathbf{G} / \mathbf{N}=\{\mathbf{N a}: \mathbf{a} \in \mathbf{G}\}
$$

is collection of distinct right co-sets of N in G under multiplication the G / N is
Quotient group or factor group.

G

Example : Let Z be an additive group of integers and let N be subgroup of Z defined by $N=\{n x \mid x \in Z\}$, where n is a fixed integer. Construct the quotient group Z / N. Also prepare a composition table for Z / N, when $\mathrm{n}=5$.

Solution :-

An additive group Z of integer is abelian.
Then its subgroup N is a normal subgroup.
We have $Z=\{0, \pm 1, \pm 2, \ldots\}$, the elements of a quotient group Z / N are the cosets which are as under.

$$
\mathbf{N}=\{0, \pm n, \pm 2 n, \ldots\}
$$

Now

$$
\begin{aligned}
\mathrm{N}+0 & =\{0,0 \pm \mathrm{n}, 0 \pm 2 \mathrm{n}, \ldots\}=\mathrm{N} \\
\mathrm{~N}+1 & =\{1,1 \pm \mathrm{n}, 1 \pm 2 \mathrm{n}, \ldots\} \\
\mathrm{N}+2 & =\{2,2 \pm \mathrm{n}, 2 \pm 2 \mathrm{n}, \ldots\}
\end{aligned}
$$

$$
\mathrm{N}+(\mathrm{n}-1)=\{\mathrm{n}-1,2 \mathrm{n}-1,3 \mathrm{n}-1,-\mathrm{n}-1, \ldots\}
$$

similarly one can show that

$$
\begin{aligned}
& \mathbf{N}+(\mathbf{n}+1)=\mathbf{N}+1 \\
& \mathbf{N}+(\mathrm{n}+2)=\mathbf{N}+2 \\
& \mathbf{N}+(\mathrm{n}+i)=\mathbf{N}+i \quad \forall i \in \mathbf{Z}
\end{aligned}
$$

i.e.

Hence

$$
\mathbf{Z} / \mathbf{N}=\{\mathbf{N}, \mathbf{N}+\mathbf{1}, \mathbf{N}+2, \ldots \mathbf{N}+(\mathbf{n}-\mathbf{1})\}
$$

For $\mathbf{n = 5 :}$

$$
N=\{0 \pm 5, \pm 10, \ldots\}
$$

The distinct cosets will be $\mathrm{N}, \mathrm{N}+1, \mathrm{~N}+2, \mathrm{~N}+3, \mathrm{~N}+4$. The composition table is

	N	$N+1$	$N+2$	$N+3$	$N+4$
N	N	$N+1$	$N+2$	$N+3$	$N+4$
$N+1$	$N+1$	$N+2$	$N+3$	$N+4$	N
$N+2$	$N+2$	$N+3$	$N+4$	N	$N+1$
$N+3$	$N+3$	$N+4$	N	$N+1$	$N+2$
$N+4$	$N+4$	N	$N+1$	$N+2$	$N+3$

Lagrange's Theorem

If G is a finite group and H is a subgroup of G, then $o(H)$ is a divisor of $0(G)$.
i.e. $\quad o(G) / 0(H)$

Example: If $G=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}=e\right\}$ is a group of $\mathrm{H}=\left\{\mathrm{a}^{3}\right.$,
$\left.a^{6}=e\right\}$ is its normal subgroup, then write G / H.
Solution : Here the distinct cosets of H in G are

$$
\begin{aligned}
& e H=\left\{e . a^{3}, e . e\right\}=\left\{a^{3}, e\right\}=H \\
& a H=\left\{a \cdot a^{3}, a . e\right\}=\left\{a^{4}, a\right\} \\
& a^{2} H=\left\{a^{2} \cdot a^{3}, a^{2} . e\right\}=\left\{a^{5}, a^{2}\right\} \\
& a^{3} H=\left\{a^{3} \cdot a^{3}, a^{3} . e\right\}=\left\{a^{6}, a^{3}\right\}=\left\{e, a^{3}\right\}=H \\
& a^{4} H=\left\{a^{4} \cdot a^{3}, a^{4} . e\right\}=\left\{a, a^{4}\right\}=a H \\
& a^{5} H=\left\{a^{5} \cdot a^{3}, a^{5} . e\right\}=\left\{a^{2}, a^{5}\right\}=a^{2} H .
\end{aligned}
$$

In this way we obtain only three distinct cosets $\mathrm{H}, \mathrm{aH}, \mathrm{a}^{2} \mathrm{H}$ of H in G . Hence $G / N=\left\{H, a H, a^{2} H\right\}$.

Example: If $G=<a>$ is a cyclic group of order 8 , then the quotient group corresponding to the subgroup generated by a^{2} and a^{4} respectively.

Solution :

$$
\text { Let, } \begin{gathered}
G=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}, a^{7}, a^{8}=e\right\} \\
H_{1}=\left\{a^{2}, a^{4}, a^{6}, a^{8}=e\right\} \\
H_{2}=\left\{a^{4}, a^{6}, a^{8}=e\right\}
\end{gathered}
$$

Since, G is abelian, therefore the subgroups H_{1} and H_{2} are normal in G.

$$
\begin{aligned}
& o\left(G / H_{1}\right)=8 / 4=2, \\
& o\left(G / H_{2}\right)=8 / 2=4 \\
& G / H_{1}=\left\{H_{1}, H_{1} a\right\} \text {, where } H_{1} a=\left\{a^{3}, a^{5}, a^{7}, a\right\} \\
& \left\{H_{1} a^{3}=H_{1} a, H_{1} a^{2}=H_{1} a^{4}=H_{1} a^{6}=H_{1} a^{8}=H_{1}\right\} \text { etc. } \\
& G / H 2=\left\{H_{2}, H_{2} a, H_{2} a^{2}, H_{2} a^{3}\right\} .
\end{aligned}
$$

THANK YOU

